Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(28): 8970-8979, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29920196

RESUMO

Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron X-ray diffraction, nuclear inelastic scattering, and micromechanical measurements, we assessed the effective macroscopic bulk modulus ( B = 11.5 ± 1.5 GPa), Young's modulus ( Y = 10.9 ± 1.0 GPa), and Poisson's ratio (ν = 0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules as well as by the distribution of the stiffest C-H···N interactions in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young's modulus to 7.1 ± 0.5 GPa both in bulk and thin film samples. The results highlight the application potential of these films in terms of strain (ε = -0.17 ± 0.05%), recoverable stress (σ = -21 ± 1 MPa), and work density ( W/V = 15 ± 6 mJ/cm3).

2.
Angew Chem Int Ed Engl ; 56(28): 8074-8078, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28488415

RESUMO

We report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz)3 )2 ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex. The strong mechanical coupling was also evidenced by the decrease of approximately 66 Hz in the resonance frequency in the high-spin state as well as by the drop in the quality factor around the spin transition.

3.
Adv Mater ; 28(34): 7508-14, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27308873

RESUMO

The fabrication of large-area vertical junctions with a molecular spin-crossover complex displaying concerted changes of spin degrees of freedom and charge-transport properties is reported. Fabricated devices allow spin-state switching in the spin-crossover layer to be triggered and probed by optical means, while detecting associated changes in electrical resistance in the junctions.

4.
Materials (Basel) ; 9(7)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773659

RESUMO

Topographic images of [Fe(Htrz)2(trz)](BF4) nanoparticles were acquired across the first-order spin transition using variable-temperature atomic force microscopy (AFM) in amplitude modulation mode. These studies revealed a complex morphology of the particles consisting of aggregates of small nanocrystals, which expand, separate and re-aggregate due to the mechanical stress during the spin-state switching events. Both reversible (prompt or slow recovery) and irreversible effects (fatigue) on the particle morphology were evidenced and correlated with the spin crossover properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...